Evolutionary games on graphs and discrete dynamical systems
نویسندگان
چکیده
منابع مشابه
Evolutionary games on graphs
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of...
متن کاملDiscrete dynamical systems on graphs and Boolean functions
Discrete dynamical systems based on dependency graphs have played an important role in the mathematical theory of computer simulations. In this paper, we are concerned with parallel dynamical systems (PDS) and sequential dynamical systems (SDS) with the OR and NOR functions as local functions. It has been recognized by Barrett, Mortveit and Reidys that SDS with the NOR function are closely rela...
متن کاملReduction of Discrete Dynamical Systems over Graphs
In this paper we study phase space relations in a certain class of discrete dynamical systems over graphs. The systems we investigate are called Sequential Dynamical Systems (SDSs), which are a class of dynamical systems that provide a framework for analyzing computer simulations. Specifically, an SDS consists of (i) a finite undirected graph Y with vertex set {1, 2, . . . , n} where each verte...
متن کاملEvolutionary Games on Visibility Graphs
We show that time series of different complexities can be transformed into networks that host individuals playing evolutionary games. The irregularity of the time series is thereby faithfully reflected in the fraction of cooperators surviving the evolutionary process, thus effectively linking time series with evolutionary games. Pivotal to the linkage is a simple visibility algorithm that trans...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Difference Equations and Applications
سال: 2014
ISSN: 1023-6198,1563-5120
DOI: 10.1080/10236198.2014.988618